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Abstract. Wide-angle photoproduction of pseudoscalar mesons is investigated under the assumption of
dominance of the handbag mechanism, considering both quark helicity flip and non-flip. The partonic
subprocess, meson photoproduction off quarks, is analysed with the help of a covariant decomposition of
the subprocess amplitudes which is independent of a specific meson generation mechanism. As examples
of subprocess dynamics, however, the twist-2 as well as two-particle twist-3 contributions are explicitly
calculated. Characteristic features of the handbag approach are discussed in dependence upon the relative
magnitudes of the invariant functions. Differential cross sections and spin correlations are predicted to
show a characteristic behaviour which allows one to test the underlying assumption of handbag dominance.

1 Introduction

Recently, the importance of the handbag mechanism in
hard exclusive reactions has been realised. The handbag
mechanism is characterised by the fact that only one quark
from the incoming and one from the outgoing nucleon par-
ticipate in the hard subprocess, while all other partons are
spectators. Factorisation properties have been shown to
hold for Compton scattering and for meson electroproduc-
tion in both kinematical regions: the deep virtual region
characterised by a large virtuality Q2 of the incoming pho-
ton and a small squared invariant momentum transfer t
from the incoming to the outgoing proton, and the wide-
angle region, where −t (and −u) are regarded as the large
scale, while Q2 is less than −t. It is to be emphasised that
for deep virtual processes, all order proofs of factorisation
exist, while for the wide-angle region factorisation has only
been shown to hold to next-to-leading order in Compton
scattering and to leading order in photo- and electropro-
duction of mesons as yet.

As illustrated in Fig. 1, the amplitudes for hard exclu-
sive processes factorise into a parton-level subprocess, e.g.,
meson photo- or electroproduction off quarks, γ(∗)q → Mq,
and generalised parton distributions (GPDs) [1] describ-
ing the soft hadron–parton transitions. Factorisation is
particularly simple in the wide-angle region. Instead of
convolution as occurring in deep virtual processes, the
wide-angle amplitudes appear as products of subprocess
amplitudes and t-dependent form factors which represent
1/x-moments of GPDs. There is another difference be-
tween deep virtual and wide-angle electroproduction of
mesons. The deep virtual process [2] is dominated by con-

p = p− ∆
2

p′ = p+
∆

2

kj = kj − ∆
2

k′j = kj +
∆

2

q q′ = q −∆

Fig. 1. The handbag diagram for photo- and electroproduction
of mesons. The large blob represents a baryon GPD, while the
small one stands for meson photo- and electroproduction off
partons. The momenta of the various particles are indicated

tributions from longitudinally polarised virtual photons
for Q2 → ∞; those from transversally polarised photons
are suppressed by 1/Q2. For these amplitudes, factorisa-
tion breaks down [3]. For wide-angle electroproduction,
both photon polarisations contribute to the same twist or-
der; there is no break-down of factorisation [4]. The limit
Q2 → 0 is therefore unproblematic.

Whereas for Compton scattering reasonable agreement
with experiment has been found despite the rather low
values of Q2 or −t, −u at which data is available, in me-
son electroproduction the magnitude of the cross sections
calculated within the handbag approach turns out to fail
in describing the data [4, 5]. The reason for this defect
is presumably the one-gluon exchange mechanism for the
generation of the meson (see Fig. 2) and not the handbag
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Fig. 2. Lowest order
Feynman graphs con-
tributing to the subpro-
cess γ(∗)q → Mq to
leading twist. The up-
per quark and antiquark
lines enter the meson’s
wave function. The inter-
nal curly lines represent
hard gluons

mechanism itself. Although the one-gluon exchange mech-
anism combined with the leading-twist meson distribu-
tion amplitude dominates for asymptotically large scales,
it may fail in the kinematical situation accessible to cur-
rent experiments which is characterised by scales of a few
GeV2 only. The lowest-order Feynman graphs contribut-
ing to γ(∗)q → Mq are the same as those occurring in the
leading-twist calculations of the meson form factor [6]. As
is well known (see, for instance [7, 8]), the leading-twist
results for the pion form factor are by a factor 3 to 4 be-
low the admittedly poor data available at present [9]. In
semi-exclusive pion photoproduction [10] which is based on
the same subprocess γ(∗)q → Mq too, the normalisation
also fails in comparison with experiment. In the light of
these results, a failure by order of magnitude for the photo-
and electroproduction cross sections is to be anticipated.
Thus, it is probably insufficient to consider the one-gluon
exchange mechanism for which only zero quark–antiquark
spatial separations are taken into account and the quark
transverse momentum is neglected. It entails a factor f2

M/s
in the photo- and electroproduction cross section, which is
indeed a tiny number at large s (fM is the meson’s decay
constant).

How can this situation be remedied? Suppose handbag
factorisation continues to hold. Then one may think, for
instance, of higher-twist or power corrections to the me-
son generation, resummation of perturbative corrections or
long-distance meson wave function effects, which may en-
hance the leading-twist amplitude decisively. For instance,
by insertion of an infinite number of fermionic loops in the
hard gluon propagator and interpreting the ambiguities in
the resummation of these loop effects (known as infrared
renormalons) as a model of higher-twist contributions an
enhancement of a factor 3 to 4 is estimated [11].

In a more pessimistic scenario, one would consider sub-
stantial non-factorising contributions to photo- and elec-
troproduction of mesons at moderately large values of the
hard scale. The purpose of this work is to investigate the
first scenario, i.e., assuming the validity of the handbag
mechanism for photoproduction of pseudoscalar mesons,
but allowing for more general subprocess amplitudes than
the one-gluon exchange ones. The generalisation of our in-

vestigation to electroproduction in the wide-angle and the
deep virtual region is straightforward.

The plan of this paper is the following: In Sect. 2 we re-
capitulate the handbag mechanism in photoproduction of
pseudoscalar mesons (P ), extend it in order to include more
general mechanisms for the meson generation and present
some kinematical details. The subprocess γq → Pq is dis-
cussed in terms of a covariant decomposition in Sect. 3, and
the twist-2 and twist-3 contributions to the subprocess are
calculated. Section 4 is devoted to the discussion of char-
acteristic predictions for meson photoproduction from the
handbag approach which may hold even if the normalisa-
tion of the cross section is not yet understood. The paper
ends with a summary.

2 The handbag mechanism

The handbag mechanism for wide-angle scattering reac-
tions was first developed for Compton scattering [12, 13]
and subsequently applied to photo- and electroproduction
of mesons [4]. In this paper we will restrict ourselves to pho-
toproduction of pseudoscalar mesons, γB1 → PB2, where
Bi denotes a member of the lowest-lying baryon octet. For
the sake of legibility, we consider here the case of charged
and uncharged pions, and, hence, of nucleons, leaving the
generalisations to other pseudoscalar mesons to the end of
the paper. A prerequisite to the application of the handbag
mechanism are Mandelstam variables, s, −t, −u, that are
large as compared to Λ2, where Λ is a hadronic scale of
order 1 GeV. It is of advantage to work in a symmetrical
frame which is a CMS rotated in such a way that the mo-
menta of the incoming (p) and outgoing (p′) baryons have
the same light-cone plus components:

p =
[
p+,

m2 − t/4
2p+ , −1

2
∆⊥

]
,

p′ =
[
p+,

m2 − t/4
2p+ ,

1
2
∆⊥

]
, (1)

where m is the mass of the nucleon; for the definition
of other momenta see Fig. 1. The chief advantage of the
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symmetric frame is that the skewness

ξ =
(p − p′)+

(p + p′)+
(2)

vanishes. The baryonic blob in the handbag, see Fig. 1, is
viewed as a sum over all possible parton configurations as in
deep inelastic lepton–nucleon scattering (DIS). The crucial
assumptions in the handbag approach are that of restricted
parton virtualities k2

i < Λ2, and of intrinsic transverse
parton momenta k⊥i, defined with respect to their parent
hadron’s momentum, which satisfy k2

⊥i/xi < Λ2, where xi

is the momentum fraction that the parton i carries.
One can then show [4,13] that the subprocess Mandel-

stam variables ŝ and û are the same as the ones for the full
process, photoproduction off baryons, up to corrections of
order Λ2/t (t̂ = t):

ŝ = (kj + q)2 � (p + q)2 = s ,

û = (kj − q′)2 � (p − q′)2 = u , (3)

where kj denotes the momentum of the active parton, i.e.,
the one to which the photon couples. The active partons
are approximately on-shell, move collinear with their par-
ent hadrons and carry a momentum fraction close to unity,
xj , x

′
j � 1. Thus, like in deep virtual exclusive scattering,

the physical situation is that of a hard parton-level sub-
process γqa → Pqb and a soft emission and reabsorption
of quarks from the baryon. The light-cone helicity ampli-
tudes [14] for wide-angle photoproduction then read

M0+, µ+(γB1 → PB2)

=
e

2

∑
a,b=u,d,s

[
HP (ab)

0+, µ+(s, t)
(
R ab

V,B1→B2
(t) + R ab

A,B1→B2
(t)

)
+HP (ab)

0−, µ−(s, t)
(
R ab

V,B1→B2
(t) − R ab

A,B1→B2
(t)

)]
, (4)

and

M0−, µ+(γB1 → PB2)

=
e

2

√−t

2m

∑
a,b=u,d,s

[
HP (ab)

0+, µ+(s, t) + HP (ab)
0−, µ−(s, t)

]
×R ab

T,B1→B2
(t) , (5)

where µ denotes the helicity of the photon and e is the
positron charge. The frame has been chosen such that the
momentum transfer ∆µ has a positive 1-component and
a zero 2-component. The helicities of the baryons in M
and of the quarks in the hard scattering amplitude H are
labelled by their signs only for the sake of legibility. The
amplitudes for other helicity configurations follow from
parity invariance:

MP
0ν′, µν = (−1)ν−ν′ MP

0−ν′, −µ−ν . (6)

An analogous relation holds for the parton-level ampli-
tudes H.

B1 B2

qa qb

Fig. 3. The GPD and the respective form factors R ab
i,B1→B2 for

B1 → B2 transitions due to emission of a quark with flavour
a and reabsorption of a quark with flavour b

The hard scattering amplitudes can be computed from
the leading-order Feynman graphs shown in Fig. 2 and the
twist-2 meson distribution amplitude. As a consequence of
this leading-twist generation of the meson and the mass-
lessness of the quarks there is no quark helicity flip. A more
general mechanism for the generation of the meson, which
we discuss in the next section, may allow quark helicity
flips. The form factors R ab

i,B1→B2
represent 1/x-moments of

GPDs at zero skewness, where x = (kj + k′
j)

+/(p+ p′)+ is
the average momentum fraction the two quarks carry. The
form factors parameterise the soft physics that controls
the emission of a quark with flavour a and the reabsorp-
tion of a quark with flavour b by a baryon (see Fig. 3). The
flavours of the emitted and reabsorbed quarks fix the quan-
tum numbers of the final baryon uniquely for given initial
baryon. The representation (4) and (5), which requires the
dominance of the plus components of the baryon matrix
elements, is a non-trivial feature given that, in contrast to
DIS and deep virtual exclusive reactions, not only the plus
components of the nucleon momenta, but also their minus
and transverse components are large in this case [13].

For the proton–proton transitions we use the simplify-
ing notation (i = V, A, T )

R aa
i,p→p(t) ≡ R a

i (t) . (7)

These form factors are related to the zero skewness proton
GPDs [1] by

R a
V (t) =

∫ 1

−1

dx

x
sign(x) H a(x, 0; t) ,

R a
A(t) =

∫ 1

−1

dx

x
H̃ a(x, 0; t) ,

R a
T (t) =

∫ 1

−1

dx

x
sign(x) E a(x, 0; t) , (8)

where we have used Ji’s notation for the GPDs. Note that
x runs from −1 to +1. As usual, a parton with a nega-
tive momentum fraction is reinterpreted as an antiparton
with a positive momentum fraction. The GPD Ẽa and its
associated form factor decouples in the symmetric frame.
The form factor R a

T , which was ignored in the previous
work on wide-angle photoproduction [4], is suppressed by
at least Λ/

√−t as compared to the other two form factors.



94 H.W. Huang et al.: Signatures of the handbag mechanism in wide-angle photoproduction of pseudoscalar mesons

The form factors R a
i for the production of pseudoscalar

mesons are similar but not identical to those appearing in
wide-angle Compton scattering [13, 15]; for instance, as a
consequence of charge conjugation symmetry, active un-
polarised quarks and antiquarks contribute with opposite
sign in photoproduction of pseudoscalar mesons but with
the same sign in Compton scattering and photoproduction
of vector mesons. The GPDs, describing the properties of
the proton, are the same in both processes, as follows from
the universality property of the GPDs [1].

The form factors for other baryon transitions can be
related to the p → p ones by flavour symmetry. Thus, as
a consequence of isospin invariance, one has (i = V, A, T )

R dd
i,n→n = R u

i ; R uu
i,n→n = R d

i ; R ss
i,n→n = R s

i . (9)

For photoproduction of charged pions, flavour non-diagonal
GPDs occur. These GPDs and, hence, the associated form
factors are related to the diagonal p → p ones by [16]

R ud
i,p→n ≡ Rπ+

i = R du
i,n→p ≡ Rπ−

i = R u
i − R d

i .
(10)

As we see, only the isovector combination contributes to
π± photoproduction. The axial form factor FA [13] and RA

for π± photoproduction are both related to the isovector
combination of H̃. Owing to the different moments that the
form factors represent, in addition to the valence quarks,
u and d sea quarks contribute to FA, whereas they cancel
in RA.

The photoproduction amplitudes for quark helicity flip
can be derived in a way fully analogous to the derivation
of the amplitudes (4) [4]. The result is

MT
0+, µ+(γB1 → PB2)

= −e

√−t

2m

∑
a,b=u,d,s

[
HP (ab)

0−, µ+(s, t) − HP (ab)
0+, µ−(s, t)

]

×
[
S ab

S,B1→B2
(t) +

1
2

S ab
V,B1→B2

(t)
]

MT
0−, µ+(γB1 → PB2)

= e
∑

a,b=u,d,s

[
HP (ab)

0−, µ+(s, t) S ab
T,B1→B2

(t) (11)

− t

4m2

[
HP (ab)

0−, µ+(s, t) − HP (ab)
0+, µ−(s, t)

]
S ab

S,B1→B2
(t)

]
.

These amplitudes are to be added to those given in (4).
Again we denote the form factors for p → p transitions by
S a

i . Analogously to the form factors R a
i , they represent

1/x-moments of the quark helicity flip distributions

S a
T =

∫ 1

−1

dx

x
sign(x) Ha

T (x, 0; t) ,

S a
S =

∫ 1

−1

dx

x
sign(x) H̃a

T (x, 0; t) ,

S a
V =

∫ 1

−1

dx

x
sign(x) Ea

T (x, 0; t) , (12)

for i = T, S, V . The signum functions, which control the
relative signs between quark and antiquark contributions,
manifest the charge conjugation properties of helicity flip
distributions. The form factors for B1 → B2 transitions
can be related to the p → p ones in the same fashion as
for Ri; see (10). The new proton GPDs are defined in [14]
(see also [17]):

1
2

∫
dz−

2π
eix p+ z− 〈p′, λ′|Ψa(−z/2)iσ+iΨa(z/2)|p, λ〉

=
1

p+ u(p′, λ′)

×
[

Ha
T (x, ξ; t) iσ+i + H̃a

T (x, ξ; t)
p+∆i − ∆+p i

m2

+Ea
T (x, ξ; t)

γ+∆i − ∆+γi

2m
+ Ẽa

T

γ+p i − p+γi

m

]
×u(p, λ) , (13)

where i = 1, 2 is a transverse index,

p =
1
2

(p + p′) , (14)

and z = [0, z−,0⊥]. At ξ = 0 the GPD Ẽa
T vanishes. As

can be seen from the helicity configurations of the involved
quarks and baryons [14], in contrast to Ha

T the GPDs Ea
T

and H̃a
T involve components of the baryon wave functions

where the parton helicities do not add up to the helicities
of the baryons. In other words, parton configurations with
non-zero orbital angular momentum contribute to it. As in-
spection of the parton–hadron helicity matrix elements [14]
reveals, these GPDs as well as the corresponding form fac-
tors Sa

V and Sa
S are expected to be suppressed as compared

to Sa
T by at least 1/

√−t and 1/t, respectively. In this sense
the situation is analogous to the expected suppression of
the Pauli form factor with respect to the Dirac one, which
should be at least ∝ 1/

√−t. On the other hand, there is no
argument why Sa

T could be suppressed as compared to Ra
V .

Thus, the quark helicity flip is suppressed by the subpro-
cess amplitudes only. It is worth mentioning that all GPDs,
those for quark helicity flip as well as those for non-flip, are
real valued, as a consequence of time reversal invariance.

3 The parton-level subprocess γqa → Pqb

3.1 A covariant decomposition

The helicity amplitudes for pseudoscalar meson photopro-
duction off quarks, γqa → Pqb, can be decomposed covari-
antly as

HP (ab)
0λ′, µλ(ŝ, t̂) =

4∑
i=1

C
P (ab)
i (ŝ, t̂) u(k′, λ′) Qi(µ) u(k, λ) ,

(15)
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where ŝ, û, and t̂ denote the subprocess Mandelstam vari-
ables. A suitable set of covariants was given by Chew et
al. (CGLN) [18]:

Q1 = 2γ5
[
q′ · q k · ε − q′ · ε k · q

]
,

Q2 = 2γ5
[
k · q ε/ − k · ε q/

]
,

Q3 = γ5 [q′ · q ε/ − q′ · ε q/] ,

Q4 = γ5 ε/ q/ , (16)

where ε is the polarisation vector of the photon. The co-
variants Qi are manifestly gauge invariant and encode the
helicity structure of the process, whereas the invariant func-
tions C

P (ab)
i depend on the dynamics. In the symmetric

frame, the various momenta and the photon’s polarisation
vector have the following representation:

k =
[
k+, k−,0⊥

]
, ∆ =

[
0, 0,

√
−t̂ e1

]
, (17)

q =
[
k−, k+,

1
2

√
−t̂ e1

]
, q′ =

[
k−, k+, −1

2

√
−t̂ e1

]
,

ε(µ) =

µ

2

√
−t̂

ŝ
, −µ

2

√
−t̂

ŝ
,

µ√
2

√
−û

ŝ
e1 − i√

2
e2

 ,

where the plus and minus components of the average parton
momentum k = (kj + k′

j)/2 are given by

k+ =
1

2
√

2

[√
ŝ +

√−û
]
, k− =

1
2
√

2

[√
ŝ − √−û

]
.

(18)
Working out the matrix elements uQiu in the symmet-

ric frame (the results are listed in Table 1) and ignoring
quark and meson masses, we can express the parton-level
helicity amplitudes in terms of the invariant functions Ci:

HP (ab)
0+,++ =

√
−t̂/2 ŝ

[
C

P (ab)
2 + C

P (ab)
3

]
,

HP (ab)
0+,−+ = −

√
−t̂/2 û

[
C

P (ab)
2 − C

P (ab)
3

]
,

HP (ab)
0−,++ = −

√
−ûŝ/2

[
t̂ C

P (ab)
1 − 2 C

P (ab)
4

]
,

HP (ab)
0−,−+ =

√
−ûŝ/2 t̂ C

P (ab)
1 . (19)

Table 1. Matrix elements of the covariants u(k′, λ′) Qi u(k, λ)
defined in (16) evaluated in the symmetric frame specified
by (17) and (18)

λ′ = λ λ′ = −λ

Q1 0 −√−ûŝ/2 t̂ µ

Q2
1
2

√
−t̂/2 [ (1 + 2λµ) ŝ − (1 − 2λµ) û ] 0

Q3
1
2

√
−t̂/2 [ (1 + 2λµ) ŝ + (1 − 2λµ) û ] 0

Q4 0
√−ûŝ/2 (2λ + µ)

Other helicity amplitudes follow from (6). As inspection
of (19) reveals, the invariant functions C2 and C3 con-
tribute only to the quark helicity conserving amplitudes,
while C1 and C4 generate quark helicity flips. As we dis-
cussed in Sect. 2, this feature entails different proton ma-
trix elements, and hence different form factors, in the full
process γB1 → PB2.

3.2 Subprocess observables

As we will see in the next section, in the context of the
handbag mechanism observables of the full process are
often related to the corresponding ones for the subprocess
in a simple fashion. It is therefore suitable to present some
of the subprocess observables in terms of the invariant
functions first.

An important observable for testing the handbag mech-
anism is the correlation between the helicities of the incom-
ing photon and quark [15,19]. This observable is defined by

Â
P (ab)
LL =

∑
λ′

{∣∣∣HP (ab)
0λ′, ++

∣∣∣2 −
∣∣∣HP (ab)

0λ′, +−
∣∣∣2}∑

λ′, λ

∣∣∣HP (ab)
0λ′, +λ

∣∣∣2 (20)

and reads

Â
P (ab)
LL =

{
(ŝ2 − û2)

[∣∣CP (ab)
2

∣∣2 +
∣∣CP (ab)

3

∣∣2]
+ 2 (ŝ2 + û2) Re

(
C

P (ab)
2 C

P (ab)∗
3

)
(21)

+ 4
û ŝ

t̂

∣∣CP (ab)
4

∣∣2 − 4 û ŝ Re
(
C

P (ab)
1 C

P (ab)∗
4

)}
/K̂P (ab) ,

in terms of the invariant functions. Here we have introduced
the quantity

K̂P (ab) = (ŝ2 + û2)
[∣∣CP (ab)

2

∣∣2 +
∣∣CP (ab)

3

∣∣2]
+ 2 (ŝ2 − û2) Re

(
C

P (ab)
2 C

P (ab)∗
3

)
+ 2 t̂ û ŝ

∣∣CP (ab)
1

∣∣2 + 4
û ŝ

t̂

∣∣CP (ab)
4

∣∣2
− 4 û ŝ Re

(
C

P (ab)
1 C

P (ab)∗
4

)
, (22)

which, up to a factor, represents the sum over the squared
absolute values of the subprocess helicity amplitudes.

One may also consider sideways polarisations of the
quark where the S direction is defined by S(′) = N×L(′) for
the incoming (outgoing) quark. L(′) is the direction of the
incoming (outgoing) quark’s 3-momentum and N = L×L′
is the normal to the scattering plane. The correlation be-
tween the helicity of the incoming photon and the sideways
polarisation of the incoming quark reads [15]

Â
P (ab)
LS = 2

Re
{

HP (ab)
0+, ++HP (ab) ∗

0−, −+ − HP (ab)
0+, −+HP (ab) ∗

0−, ++

}
∑

λ′, λ

∣∣∣HP (ab)
0λ′, +λ

∣∣∣2 .

(23)
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Expressing it in terms of the invariant functions, one finds

Â
P (ab)
LS = 2

√
û ŝ

t̂

× Re
{

t̂ (ŝ − û) C
P (ab)
2 C

P (ab)∗
1 − t̂ 2 C

P (ab)
3 C

P (ab)∗
1

+ 2 û (CP (ab)
2 − C

P (ab)
3 )CP (ab)∗

4

}
/K̂P (ab) . (24)

A non-zero Â
P (ab)
LS requires both quark helicity flip (i.e.,

non-zero C1 and/or C4) and non-flip (i.e., non-zero C2
and/or C3) amplitudes.

As we see, the observables in general depend on the in-
variant functions in a complicated way. If one of the invari-
ant functions dominates the others, the expressions (21),
(22) and (24) become simple and clear and exhibit differ-
ences characteristic of the dominating invariant function.
If, for instance, either C2 or C3 dominates (or if their phases
differ by 90◦ and C1, C4 are negligible), Â

P (ab)
LL reduces to

Â
P (ab)
LL � ŝ2 − û2

ŝ2 + û2 . (25)

The result (25) coincides with the helicity correlation in
γq → γq, the subprocess occurring in Compton scatter-
ing [15]. In other cases, the helicity correlation differs
from (25) drastically. Thus, for instance, if C1 dominates,
Â

P (ab)
LL is zero, while a dominant C4 leads to Â

P (ab)
LL = 1.

How these subprocess results affect the full process, namely
meson photoproduction off baryons, remains to be dis-
cussed.

3.3 Contributions from twist-2
and twist-3 meson generation

As an example of a dynamical scenario, let us discuss the
one-gluon exchange mechanism. The expressions obtained
from the Feynman graphs shown in Fig. 2 are to be convo-
luted with the meson distribution amplitude. According to
Beneke and Feldmann [20], the light-cone projection op-
erator of an outgoing pseudoscalar meson in momentum
space, including twist-3 two-particle contributions, reads
(conveniently rewritten in the notation of [21])

PP (ab)
αβ,kl =

fP

2
√

2NC

Cab
P

δkl√
NC

×
{

γ5√
2

q/′φP (τ)

+ µP
γ5√
2

[
φPp(τ) − iσµν

q′µk′ν

q′ · k′
φ′

Pσ(τ)
6

+iσµνq′µ φPσ(τ)
6

∂

∂�⊥ν

]}
αβ

, (26)

where fP is the meson’s decay constant; for instance, fπ =
132 MeV; α (a, k) and β (b, l) represent Dirac (flavour,
colour) labels of the quark and antiquark, respectively. The

parameter µP in (26) is proportional to the chiral conden-
sate. For the pion, the familiar result is µπ = m2

π/(mu +
md) � 2 GeV at a scale of 2 GeV. In (26), �⊥ denotes the
transverse momentum of the quark entering the meson,
defined with respect to the meson’s momentum, q′. Af-
ter performing the derivative the collinear limit, �⊥ = 0,
is taken. Note that in the massless limit we are work-
ing in, the two vectors q′ and k′/(k′ · q′) are light-like and
their space components have opposite sign1. The projector
takes into account the familiar twist-2 distribution ampli-
tude φP (τ) and the two-particle twist-3 ones φPp(τ) and
φPσ(τ), where τ is the momentum fraction carried by the
quark inside the meson. In (26), φ′

Pσ denotes the deriva-
tive of φPσ with respect to τ . A complete projector to
twist-3 accuracy would also include three-particle contri-
butions [22]. Assuming the three-particle distributions to
be strictly zero, the equations of motion fix the twist-3
distribution amplitudes [20,22] to

φPp(τ) = 1 , φPσ(τ) = 6 τ (1 − τ) . (27)

Although strictly vanishing three-particle distributions
cannot be justified [20], the form (27) gives a hint at the
magnitude of the twist-3 two-particle contribution. In [22,
23] the next Gegenbauer coefficients for φPp and φPσ have
been calculated exploiting results for the three-particle
twist-3 distribution amplitudes and equations of motion.

The explicit calculation of the leading-order twist-2
contribution to the process γqa → Pqb provides the fol-
lowing results for the invariant functions:

C
P (ab)
2

∣∣∣
twist−2

= −2παs(µ2
R)fP Cab

P

CF

Nc

× eaû + ebŝ

t̂

〈1/(1 − τ)〉P + 〈1/τ〉P

ûŝ
,

C
P (ab)
3

∣∣∣
twist−2

= −2παs(µ2
R)fP Cab

P

× CF

Nc

eaû + ebŝ

t̂

〈1/(1 − τ)〉P − 〈1/τ〉P

ûŝ
,

C
P (ab)
1

∣∣∣
twist−2

= C
P (ab)
4

∣∣∣
twist−2

= 0 . (28)

Here, µR is an appropriate renormalisation scale and CF =
(N2

c −1)/(2Nc) is the usual SU(3) colour factor. Note that
the positron charge e has been pulled out of the subprocess
amplitudes and is written explicitly in (4) and (11). The
flavour weight factors Cab

P comprise the flavour structure
of the meson. For pions they read

Cuu
π0 = − Cdd

π0 = 1/
√

2 , Cud
π+ = Cdu

π− = 1 ; (29)

all other factors are zero (e.g., Css
π0 = 0), since the projection

operator (26) implies the valence quark approximation for
the meson. 〈1/τ〉P and 〈1/(1 − τ)〉P are the moments of
the meson’s twist-2 distribution amplitude

〈1/τ〉P =
∫ 1

0
dτ

φP (τ)
τ

. (30)

1 In the frame where q′ = (q′+, 0,0⊥), q′µk′ν/(k′ · q′) =
q′µnν/(n · q′) where n = (0, 1,0⊥) and q′ · n = q′+.
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Owing to the evolution of the distribution amplitudes the
moments depend on the factorisation scale µF . The pion
distribution amplitude is symmetric under the replacement
τ ↔ 1−τ ; hence Cπ

3 is zero as well. For kaons, for instance,
this symmetry does not hold.

To leading-order in αs the twist-3 content of the pro-
jector (26) leads to the invariant functions

C
P (ab)
1

∣∣∣
twist−3

= −4παs(µ2
R)

CF

NC

fP µP

t̂
Cab

P

∫ 1

0
dτ

×
{

ea

ŝ2

[
− φPp

1 − τ
−

(
2
τ

+
1

1 − τ

)
φ′

Pσ

6
+

φPσ

3τ2

]
+

eb

û2

[
−φPp

τ
+

(
2

1 − τ
+

1
τ

)
φ′

Pσ

6
+

φPσ

3(1 − τ)2

]

+
ebt̂

ŝû2

[
φPp

τ
+

(
2

1 − τ
+

1
τ

)
φ′

Pσ

6

− (1 − τ − τ2)
τ2(1 − τ)2

φPσ

3

]}
, (31)

and

C
P (ab)
4

∣∣∣
twist−3

= −4παs(µ2
R)

CF

NC
fP µP Cab

P

∫ 1

0
dτ

×
{

ea

ŝ2

[
− φPp

1 − τ
− φ′

Pσ

6τ(1 − τ)
+

φPσ

6τ2(1 − τ)

]
+

eb

û2

[
−φPp

τ
+

φ′
Pσ

6τ(1 − τ)
+

φPσ

6τ(1 − τ)2

]

+
ebt̂

ŝû2

[
φ′

Pσ

6τ(1 − τ)
− 1 − 2τ

τ2(1 − τ)2
φPσ

6

]}
. (32)

Furthermore,

C
P (ab)
2 |twist−3 = C

P (ab)
3 |twist−3 = 0 . (33)

Inserting the distribution amplitudes (27) into (31)
and (32), we obtain

C
P (ab)
1 |twist−3 = C

P (ab)
4 |twist−3 = 0 . (34)

Although (34) is a consequence of the special distribution
amplitudes (27) we take it as a hint at the smallness of the
twist-3 contribution. The generalisation to more general
distribution amplitudes than (27) is beyond the scope of
the present paper and is left to a forthcoming publication.
Such a calculation requires the inclusion of three-particle
twist-3 contributions for consistency. Here we only remark
that the distribution amplitudes proposed in [22, 23] lead
to finite results for C

P (ab)
1 and C

P (ab)
4 . In particular, as can

easily be seen, factorisation holds for them2.
Perturbative corrections to the twist-2 and twist-3 con-

tributions will not change the separation of quark helicity
flip and non-flip. Each additional gluon goes along with an
even number of γ matrices. Therefore, there is no mixing
between C2 and C3, on the one side, and C1 and C4 on
the other side.

2 This statement is only correct if the chiral corrections ad-
vocated in [23], are neglected. These terms break factorisation.

4 Predictions from the handbag mechanism
for meson photoproduction

4.1 General remarks

The twist-2 contribution (28) from the handbag mechanism
to pion photoproduction has been computed in [4]. Using
the asymptotic distribution amplitude φπ(τ) = 6τ(1 − τ),
leading to a value of 3 for the 1/τ moment, a cross section
has been obtained far below experiment. We have also seen
that the contribution with the twist-3 meson distribution
amplitude does not solve this problem. It is suggestive to as-
sume that a more general mechanism, unknown at present,
is at work for the generation of the meson. It may consist
of a resummation of perturbative corrections and/or a sum
over higher twists or power corrections. There is, of course,
also the possibility that the handbag contribution does not
dominate meson photoproduction at momentum transfer
of the order of 10 GeV2.

In this section we discuss predictions for meson photo-
production from the handbag approach without assuming
a specific mechanism for the generation of the meson. Sup-
ported by our estimates of the twist-3 contributions, we
conjecture the suppression of the quark helicity flip. In the
handbag mechanism the baryons emit and reabsorb par-
tons which carry momentum fractions close to unity (see
Sect. 2). From phenomenological and theoretical consider-
ations we expect these partons to be most likely valence
quarks of the baryons; sea quarks are disfavoured. Hence,
in order to simplify our analysis further, we assume the
active partons to be valence quarks of the involved baryons.

The experimental verification of various predictions we
present below would be a clear hint at the dominance of the
handbag mechanism and will shed light on the dynamics
of the meson generation. Provided the form factors RP

i are
sufficiently well known, which will likely be the case soon
owing to the running JLAB measurements on Compton
scattering and the universality property of the GPDs, it
might even be possible to determine the invariant func-
tions CP

2 and CP
3 directly from experiment. Despite the

still not understood normalisation of the cross section, we
believe that the experimental examination of the handbag
predictions is a rewarding goal.

To start with, we consider the flavour dependence of the
invariant functions C

P (ab)
i for the production of charged

pions. In order to understand this dependence, it is instruc-
tive to make the isovector C

(−)
i and isoscalar C

(0)
i content

of the invariant functions explicit by writing [18]

C
(−)
i =

1
2
√

2

[
Cπ+

i − Cπ−
i

]
,

C
( 0 )
i =

1
2
√

2

[
Cπ+

i + Cπ−
i

]
, (35)

where the flavour superscripts ud, du are omitted since
there is only one subprocess. C

(−)
2 is antisymmetric under

the ŝ ↔ û crossing, while C
(0)
2 is symmetric [18]. Using

these crossing properties and charge factors corresponding
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to isovector and isoscalar combinations of u and d quarks,
we write3

C
(−)
2 = (eu − ed)

ŝ − û

t̂

c2(ŝ, t̂)
2
√

2
,

C
( 0 )
2 = (eu + ed)

c2(ŝ, t̂)
2
√

2
, (36)

where we assume isospin independence of the reduced in-
variant function c2. It is symmetric under the ŝ ↔ û cross-
ing. Hence,

Cπ+

2 (ŝ, t̂) =
euû + edŝ

ŝ + û
c2(ŝ, t̂) ,

Cπ−
2 (ŝ, t̂) =

edû + euŝ

ŝ + û
c2(ŝ, t̂) , (37)

in conformity with the twist-2 contribution (28). The asso-
ciated form factors R

ud(du)
i,p(n)→n(p) = Rπ±

are given in (10).
The invariant function Cπ

3 exhibits a crossing behaviour
opposite to that of Cπ

2 [18]. Therefore, we assume in analogy
to (36)

C
(−)
3 = (eu − ed)

c3(ŝ, t̂)
2
√

2
,

C
( 0 )
3 = (eu + ed)

ŝ − û

t̂

c3(ŝ, t̂)
2
√

2
, (38)

which leads to

Cπ+

3 (ŝ, t̂) =
euû − edŝ

ŝ + û
c3(ŝ, t̂) ,

Cπ−
3 (ŝ, t̂) =

edû − euŝ

ŝ + û
c3(ŝ, t̂) . (39)

The reduced invariant function c3 is crossing symmetric as
c2.

For π0 photoproduction we have to consider two sub-
processes, γu → π0u and γd → π0d. According to [18]
their isospin decomposition involves the isoscalar part C

(0)
i ,

which also appears in the charged pion case, and a new
isovector component C

(+)
i which has the same crossing

properties as C
(0)
i . In analogy to (36) and (38) and assum-

ing again isospin independence of the reduced invariant
functions we write

C
(+)
2 = (eu − ed)

c2(ŝ, t̂)
2
√

2
,

C
(+)
3 = (eu − ed)

ŝ − û

t̂

c3(ŝ, t̂)
2
√

2
. (40)

Sum and difference of C(0)
i and C

(+)
i provide the subprocess

amplitudes for the π0 photoproduction (a = u, d)

C
π0(aa)
2 (ŝ, t̂) = ea Caa

π0 c2(ŝ, t̂) ,
3 Since we are working in the massless limit, (ŝ − û)/t̂ is, up

to ŝ ↔ û symmetric factors, the only possibility to construct
a dimensionless crossing-odd term.

C
π0(aa)
3 (ŝ, t̂) = ea Caa

π0
ŝ − û

t̂
c3(ŝ, t̂) , (41)

where the Caa
π0 are the flavour weight factors defined in (29).

The leading-twist result (28) is again in agreement with
these isospin and crossing considerations. Note that in con-
trast to the case of charged pions, the flavour dependence
here appears as a constant factor. It is therefore convenient,
following previous work [4, 5, 13], to pull out the flavour
dependence ea Caa

π0 from the subprocess amplitudes and to
absorb them into the form factors which leads to

R π0

i = eu Cuu
π0 Ru

i + ed Cdd
π0 Rd

i =
1√
2
(euRu

i − edR
d
i ) . (42)

The remaining subprocess amplitudes, for which the flavour
labels are to be dropped now, read

Cπ0

2 = c2(ŝ, t̂) , Cπ0

3 =
û − ŝ

ŝ + û
c3(ŝ, t̂) . (43)

For subsequent numerical studies, a model for the form
factors or for the underlying GPDs is required. Following [4,
13, 15], we use a model which is motivated by overlaps of
light-cone wave functions [12, 13, 24] and is designed for
large −t and zero skewness:

Ha(x, 0; t) = exp
[
a2

N t
1 − x

2x

]
[qa(x) − q̄a(x)] ,

H̃a(x, 0; t) = exp
[
a2

N t
1 − x

2x

]
[∆qa(x) − ∆q̄a(x)] ,

(44)

where q(x) and ∆q(x) are the usual unpolarised and po-
larised parton distributions in the proton4,5. Note that
here we display quarks and antiquarks explicitly; there-
fore, the moments of the GPDs are obtained from them by
integrating only from x = 0 to 1. Forced by the Gaussian
in (44), only large x contribute for large −t. For the trans-
verse size parameter of the proton aN , we take a value of
0.8 GeV [13]. Since the phenomenological parton distribu-
tions [25] suffer from large uncertainties at large x, which
is an important region for hard wide-angle scattering, the
model is to be improved at large x; see [13,26].

The form factor RT is not modelled explicitly but rather
fixed relative to RV . According to a recent measurement
performed at JLAB [27], its electromagnetic analogue, the
Pauli form factor of the proton F2, seems to be suppressed
by Λ/

√−t as compared to the Dirac form factor F1. Since,
on the one hand, F1 and RV are related to the GPD H,
while, on the other hand, F2 and RT are associated with
E, it is plausible to expect a similar suppression of RT , as
seems to occur for F2. Hence, as has been discussed in [15],
the ratio

κP

T =
√−t

2m

R P
T

R P
V

(45)

4 In the full process for which the GPDs are needed, t is
identified with t̂.

5 In principle, the helicity flip GPD Ha
T can be modelled

analogously to (44). In this case, the corresponding PDFs are
the transversity distributions δa(x).
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may be expected to be a constant at large −t and RT and,
hence, the proton helicity flip amplitude (5) has therefore
to be taken into account. However, a suppression of RT

like Λ2/t cannot be excluded as yet [28], although recent
estimates [29] of two-photon exchange contributions seem
to favour the JLAB results [27]. In the former case, one
may ignore RT and proton helicity flip for not too small
values of −t.

4.2 Ratio of π+ and π− photoproduction cross sections

The derivation of the photoproduction amplitudes within
the handbag approach naturally requires the use of the
light-cone helicity basis. However, for comparison with ex-
perimental and other theoretical results, the use of the
ordinary photon–nucleon CMS helicity basis is more conve-
nient. The standard helicity amplitudes Φ0ν′, µν , defined in
a CMS in which the photon and the incoming proton move
along the 3-direction, are obtained from the light-cone he-
licity amplitudes (4), defined in the symmetric frame, by
the following transform [14,15]:

ΦP
0ν′, µν = MP

0ν′, µν (46)

+ β/2
[
(−1)1/2−ν′ MP

0−ν′, µν + (−1)1/2+ν MP
0ν′, µ−ν

]
,

where

β =
2m√

s

√−t√
s +

√−u
. (47)

Since we are now discussing the full process within the
handbag approach, we can make use of (3). As pointed out
in [30], besides this there are ambiguities in relating the
massless kinematics used in the handbag approach with the
experimental one for which, in particular at energies avail-
able at JLAB, the proton mass cannot be ignored. For the
numerical results presented here we use the identification
of our Mandelstam variables with the experimental ones
(sexp, uexp, texp) in which the nucleon mass is taken into
account properly (scenario 2 in the terminology of [30]):

s = sexp − m2 , t = texp , u = uexp − m2 . (48)

The unpolarised differential cross section for the pro-
duction of a pseudoscalar meson is given by

dσP

dt
=

1
32πs2

∑
ν′,µ

∣∣∣ΦP
0ν′, µ+

∣∣∣2 , (49)

where the sum over the squared helicity amplitudes can
be expressed as∑

ν′,µ

∣∣∣ΦP
0ν′, µ+

∣∣∣2 = −
(e

2

)2
t (s − u)2KP . (50)

For photoproduction of π mesons, the function KP is de-
fined by

KP =
[(

R P
V )2

[
1 + (κP

T )2
]
+

t2

(s − u)2
(R P

A )2
] ∣∣CP

2

∣∣2
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Fig. 4. The ratio of the γn → π−p and γp → π+n cross sections
versus photon beam energy E, at a CMS scattering angle of
90◦. Data are taken from [31]. The solid line is the handbag
prediction with the identification (48). The uncertainties due
to target mass corrections [30] are indicated by the shaded
band

+
[

t2

(s − u)2
(
R P

V )2
[
1 + (κP

T )2
]
+ (R P

A )2
] ∣∣CP

3

∣∣2
− t

s − u

[(
R P

V )2
[
1 + (κP

T )2
]
+ (R P

A )2
]

×2Re (CP∗
2 CP

3 ) , (51)

if CP
1 and CP

4 are neglected.
If CP

2 dominates, we obtain from (37) and (51) for the
ratio of the π± cross sections6

dσ(γn → π−p)
dσ(γp → π+n)

=
(

eus + edu

euu + eds

)2

. (52)

As Fig. 4 reveals, the prediction (52) is in surprisingly
good agreement with recent experimental results from
JLAB [31] given the small photon beam energies (sexp =
2mE + m2). For comparison, we also quote the result for
the ratio of the cross sections which follows from the dom-
inance of CP

3 . In this case, we find from (39) and (51)

dσ(γn → π−p)
dσ(γp → π+n)

=
(

eus − edu

euu − eds

)2

, (53)

which tends to infinity at large s and a scattering angle
of 90◦ and is clearly at variance with experiment [31].
For the special case of equal reduced invariant functions,
c2 = c3, the ratio of cross sections is unity. Thus, there
is a strong indication from experiment that the handbag
mechanism is at work in these processes with |CP

2 | 
 |CP
3 |

provided our assumption of negligible quark helicity flip
contributions holds. Structurally, the result (52) coincides
with the leading-twist prediction with, however, a more
general function CP

2 .
6 The invariant functions C

(0,−)
1 and C

(0,−)
4 have the same

crossing properties as C
(0,−)
2 and would therefore lead to the

same ratio of the π− and π+ cross sections.
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4.3 Spin correlations

Spin correlations provide further severe tests of the hand-
bag mechanism. They are given by ratios of partial cross
sections within one and the same process and are, therefore,
independent of flavour symmetry breaking effects. If one
of the invariant functions dominates, for which the ratio of
π± cross sections provides some evidence, it cancels, and
an absolute prediction for spin correlations is obtained.

The correlation of the incoming photon and nucleon
helicities, ALL, or the helicity transfer from the incoming
photon to the outgoing nucleon KLL, is defined as in (20)
but with the subprocess amplitudes, H, replaced by the
corresponding amplitudes, Φ, of the full process. In terms
of form factors and invariant functions, the helicity corre-
lation for pion photoproduction reads

AP
LL = KP

LL =
−2t

s − u

R P
A R P

V

KP
(1 + β κP

T ) (54)

×
[∣∣CP

2

∣∣2 +
∣∣CP

3

∣∣2 + 2
s2 + u2

s2 − u2 Re
(
CP∗

2 CP
3
)]

,

if CP
1 and CP

4 are neglected. The expression strongly sim-
plifies if one of the invariant functions dominates and if
some reasonable kinematical approximations as well as the
fact that R2

A ≤ R2
V , are used. The latter property follows

from (44) directly. Thus, if CP
2 
 CP

3 , one finds

AP
LL � s2 − u2

s2 + u2

R P
A

R P
V

(1 + β κP

T ) , (55)

while for CP
3 
 CP

2 , the roles of R P
V and R P

A are roughly
interchanged. Equation (55) is the same expression as one
finds in wide-angle Compton scattering [15]. Provided one
of the invariant functions dominates, the helicity correla-
tion should exhibit a scattering angle dependence as that
of the corresponding observable for the partonic subpro-
cess (25); only its magnitude is diluted by a ratio of slightly
process-dependent form factors; see Fig. 5. If, on the other
hand, the reduced invariant functions (43) have roughly the

Fig. 5. Handbag predictions for the helicity correlation (54) in
π0 photoproduction versus cos θ at two different beam energies
and two values of the ratio κπ0

T assuming the dominance of the
invariant function Cπ0

2 . Target mass corrections are not shown

Fig. 6. Handbag predictions for the helicity correlation ALL

(54) in π0 photoproduction versus cos θ at a beam energy of
5 GeV and with κπ0

T = 0.37. For the invariant functions (43),
the three cases c3 = 0, c2 = 0, and c3 = c2 are investigated

same value, c2 � c3, one obtains Aπ0

LL � 0, while the helic-
ity correlations for charged pions are non-zero but small in
magnitude. In Fig. 6 we display results for the helicity cor-
relation in π0 photoproduction obtained for three different
assumptions on the reduced invariant functions c2 and c3
in order to demonstrate the sensitivity of this observable
to the underlying meson generation mechanism.

The correlation between the helicity of the incoming
photon and the sideways polarisation of either the incoming
(ALS) or outgoing (KLS) nucleon is defined as in (23) but,
as for ALL, with the H being replaced by the amplitudes
Φ. This definition leads to (CP

1 , CP
4 neglected)

AP
LS = −KP

LS =
2t

s − u

R P
V R P

A

KP
(β − κP

T ) (56)

×
[∣∣∣CP

2

∣∣∣2 +
∣∣∣CP

3

∣∣∣2 + 2
s2 + u2

s2 − u2 Re(CP
2 C 3

P∗)
]

.

Predictions for ALS are shown in Fig. 7. If CP
2 
 CP

3 , for
instance, (56) simplifies to

AP
LS � s2 − u2

s2 + u2

R P
A

R P
V

(κP

T − β) , (57)

Fig. 7. The helicity correlation ALS (56) for π0 photoproduc-
tion. For the legend, see Fig. 5
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and a similar expression in the case of a dominant CP
3 .

In contrast to AP
LL, which is a rather robust prediction

of the handbag approach, AP
LS depends on the difference

of two correction terms: the kinematical factor β which
controls the transform of the light-cone helicity amplitudes
to the standard CMS ones and the badly known tensor
form factor. Hence, one has to be aware of possible large
corrections to AP

LS . We also repeat that the subprocess
Â

P (ab)
LS is zero if quark helicity flip is neglected, see (24),

which again signals that AP
LS is dominated by soft physics.

A particular noteworthy result is the ratio of the two
correlation parameters

AP
LS

AP
LL

= −KP
LS

KP
LL

=
κP

T − β

1 + βκP
T

, (58)

which holds for any values of CP
2 and CP

3 as can easily
be seen from (54) and (56). This result is the same as
in Compton scattering [15]. Many corrections, as, for in-
stance, those due to the proton mass, cancel in (58) to a
large extent [24].

Before closing this section a remark regarding the quark
helicity flip contribution is in order. Its dominance leads to
very different results as we have already noted in Sect. 3.2.
Thus, for instance, if we take only the leading form factor,
ST , into account (see (12)), the dominance of CP

1 leads to
AP

LL = 0 while a dominant CP
4 provides AP

LL = 1.
At JLAB the observables KLL and KLS have recently

been measured for π0 photoproduction [32] in a kinematical
range, however, in which the handbag approach cannot
be applied. Measurements of these observables at higher
energies are needed.

4.4 Generalisation to other pseudoscalar mesons

Up to this point we have concentrated on photoproduction
of pions. However, nearly all that we have said holds for
other pseudoscalar mesons as well and is, in fact, written
in a form that allows for a straightforward generalisation.
Thus, the handbag amplitudes (4), (5) and (11) (with the
nucleon mass replaced by an appropriate one) hold directly
as well as the covariant decomposition (15) and (19), the
subprocess observables and the twist-2 and twist-3 results.
One only has to insert the relevant form factors and flavour
factors Cab

P . For the process γp → K+(0)Σ0(+), one has
for instance

R ds
i, p→Σ+ �

√
2R us

i, p→Σ0 � −R d
i + R s

i , (59)

and Cus
K+ = 1, Cds

K0 = 1. All other flavour factors are zero.
The form factors (59) as well as those for other processes
can easily be obtained from the information given in [16].

The results for the spin correlations discussed in
Sect. 4.3 hold for other pseudoscalar mesons as well. In
particular, if CP

2 dominates in a given process, then (55)
and (57) are approximately valid. One has to be aware that
the mass of the nucleon in the definition of the quantity
β (in (5) and (11), too) has to be replaced appropriately.

Also, the ratio of ALS and ALL (58) holds. Ratios of cross
sections, analogues to (52), can also be discussed. In this
context the situation for kaons is however more intricate.
Although the reaction γN → ΣK has an isospin decompo-
sition of the same form as in the pion photoproduction [33],
the invariant functions do not have definite behaviour un-
der ŝ ↔ û crossing. But if we simply generalise the leading-
twist result (28) we obtain the equivalent of (37). From
this we find

dσ(γp → K0Σ+)
dσ(γp → K+Σ0)

= 2
(

edu + ess

euu + ess

)2

. (60)

As for the case of pions, see (52), the form factors (59)
cancel here.

When comparing photoproduction cross sections for
pseudoscalar mesons not belonging to the same isospin
multiplet, flavour symmetry breaking is to be considered.
The decay constants play an important role in understand-
ing many properties of flavour symmetry breaking in the
pseudoscalar meson sector [34]. One may therefore expect
that the decay constants also account for the main symme-
try breaking effects in meson photoproduction. If so, the
ratio of the η and π0 cross sections should, for instance,
approximately be proportional to (f eff

η /fπ)2 � 2, where
the effective η decay constant may be evaluated employ-
ing the quark-flavour mixing scheme advocated for in [34].
In addition, there is a minor effect due to the different form
factors in the cross section ratio. For other cross section
ratios, one has to be aware of additional flavour symmetry
breaking effects or, in the case of the η′, its glue content
may be of importance. As an example how to take into ac-
count the flavour mixing together with gg components of
the wave function we present the derivation of the leading-
twist result for η and η′ photoproduction in the Appendix.

Finally, an interesting peculiarity is to be noted for the
leading-twist calculation in the case of kaons. The kaon
distribution amplitude does not exhibit the symmetry un-
der the replacement τ ↔ 1 − τ and therefore has odd and
even terms in the Gegenbauer expansion [35], in contrast
to the case of the pion. As we see from (28), CK

3 is related
to the odd coefficients in the Gegenbauer expansion and
is therefore not necessarily zero to leading-twist accuracy.
According to the estimates of the lowest Gegenbauer co-
efficients (see, for instance, [36]), CK

3 seems to amount to
only about 10% of CK

2 to twist-2 accuracy.

5 Summary

The handbag mechanism for wide-angle photoproduction
of pseudoscalar mesons has been investigated. In contrast
to the analysis performed in [4] where the leading-twist
generation of the meson has been assumed, the partonic
subprocess, γq → Pq, has here been treated by means of
the CGLN covariant decomposition [18]. The associated
four invariant functions encode the dynamics of the sub-
process and in particular that of the meson generation.
This way we can consider quark helicity flip and non-flip
contributions. While in the latter case the treatment of
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Fig. 8. LO Feynman diagrams that
contribute to the subprocess amplitude
γqa → (gg)qa. Three more graphs are
obtained by crossing the gluon lines

the handbag is analogous to that occurring in wide-angle
Compton scattering [4, 13], the quark helicity flip contri-
bution necessitates the introduction of helicity flip GPDs
and the associated form factors, about which not much is
known at present.

Depending on the relative magnitudes of the invariant
functions, the handbag approach leads to the characteristic
predictions for ratios of cross sections and spin correlations.
Provided quark helicity flip can be neglected, the data [31]
on the ratio of the π− and π+ cross sections give a strong
indication to the dominance of the invariant function C 2.
It would be interesting to see whether the data on the
helicity correlation support this finding. If so, we would
be tempted to conclude that the handbag mechanism is at
work in meson photoproduction with invariant function for
the subprocess which respects the relative order of mag-
nitude, as predicted by a calculation of the twist-2 and
twist-3 contributions, although their absolute size must be
larger. It remains to be seen then whether resummation of
perturbative corrections or higher twist effects may lead
to such a large invariant function C 2.
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A The leading-twist result
for η and η′ photoproduction

From the discussions in the preceding sections it has be-
come clear that the twist-2 contribution does not dominate
wide-angle photoproduction of pseudoscalar mesons in the
kinematical range currently accessible. In spite of this we
will provide the leading-twist result for η and η′ photo-
production for the sake of completeness and for possible
future use.

For the η and η′ mesons, mixing is to be taken into
account. It is advantageous for a perturbative calculation
to choose SU(3)F singlet and octet flavour combinations of
quark–antiquark states as the valence Fock states of η and
η′ mesons [21]. The photoproduction amplitudes are then
calculated for these combinations separately with corre-
sponding distribution amplitudes and decay constants f i

η,
f i

η′ , i = 1, 8. The numerical values of these decay constants
have been evaluated in [34]:

f8
η = 1.17fπ , f1

η = 0.19fπ ,

f8
η′ = −0.46fπ , f1

η′ = 1.15fπ . (61)

The photoproduction amplitudes for η or η′ production off
protons are the sum of the corresponding singlet and octet
amplitudes. In addition to the qq̄ combinations there is
also a two-gluon state which also possesses flavour singlet
quantum numbers and contributes to leading twist. For
electroproduction, the corresponding amplitude for lon-
gitudinally polarised virtual photons has been calculated
in [21]. Owing to the smallness of f1

η the two-gluon contri-
bution to η photoproduction is unimportant, in contrast
to η′ production, where it may be sizable.

Following [21], we assume that mixing is completely em-
bedded in the decay constants and use particle-independent
distribution amplitudes φPi ≡ φi, where P = η, η′. As re-
marked above, the P = η, η′ amplitudes are expressed
in terms of the contributions of their flavour octet and
flavour singlet qq̄ Fock components as well as from the gg
one. The former are given by (28) with fP → f i

P , φP → φi,
and Cab

P → Cab
i , where i = 8, 1. The numerical values of

the flavour factors are

Cuu
8 = Cdd

8 =
1√
6

, Css
8 = − 2√

6
,

Cuu
1 = Cdd

1 = Css
1 =

1√
3

,
(62)

and Cab
i = 0 for other flavour combinations. The amplitudes

γqa → (gg)qa can easily be computed from the Feynman
diagrams displayed in Fig. 8. Using the normalisations of
the two-gluon distribution amplitude and the associated
one of the two-gluon twist-2 projector as proposed in [21],
one finds the following result for the invariant function CP

2 :

C
P (aa)
2

∣∣∣
twist−2

= 4παs(µ2
R)

CF

NC

ea

ûŝ

×
{

f8
P Caa

8 〈1/τ〉8 + f1
P Caa

1 〈1/τ〉1 − f1
P

1√
nf

〈1/τ2〉g

}
,

C
P (aa)
1

∣∣∣
twist−2

= C
P (aa)
3

∣∣∣
twist−2

= C
P (aa)
4

∣∣∣
twist−2

= 0,(63)

with nf = 3 being the numbers of quark flavours. The
invariant function C

P (aa)
3 is zero to leading-twist accuracy

since the distribution amplitudes φ8,1 are symmetric under
the replacement τ ↔ 1 − τ and the gluon contribution is
zero even at parton level. The moment of the two-gluon
distribution amplitude, which is antisymmetric under the
replacement τ ↔ 1 − τ and which mixes under evolution
with φ1, is defined by

〈1/τ2〉g =
∫ 1

0
dτ

φg(τ)
τ2 . (64)



H.W. Huang et al.: Signatures of the handbag mechanism in wide-angle photoproduction of pseudoscalar mesons 103

In [21], the twist-2 gluon distribution φg amplitude
has been estimated from a NLO analysis of the γ → η, η′
transition form factors. The Gegenbauer series of the dis-
tribution amplitudes have been truncated at n = 2; for
the only non-zero Gegenbauer coefficient, a value of Bg

2 ≡
Bg

2 (µ2
0) = 9±12 has been found at a scale of µ2

0 = 1 GeV2.
This coefficient is connected, through evolution, with the
Gegenbauer coefficient B1

2 ≡ B1
2(µ2

0) = −0.08 ± 0.04 ap-
pearing in the expansion of φ1. It is to be stressed that
the evolutional effects play an important role for the dis-
tribution amplitudes that differ from the asymptotic form
(φ1 = φ8 = 6τ(1 − τ), φg = 0). Recently, a combined
analysis of the transition form factors and the inclusive
Υ (1S) → η′X decay lead to more severe restrictions of
the Gegenbauer coefficients [37], namely, B

(g)
2 ≈ 8± 5 and

B1
2 ≈ −0.07 ± 0.03 at µ2

0 = 1 GeV2. In any case, the two-
gluon contribution may be sizable and could enhance the
cross section for η′ photoproduction substantially.
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